ECTS
Katalog kursów ECTS

Szczegóły kursu
Kod kursu: IISN10420o12
Rok / Semestr: 2012/2013 letni
Nazwa: Analiza matematyczna
Kierunek: Inżynieria Środowiska
Typ studiów: I st. - inżynierskie
Rodzaj kursu: Obligatoryjny
Semestr studiow: 2
Punkty ECTS: 8
Formy kształcenia (wykłady / ćwiczenia / inne): 18 / 27 / 0
Prowadzący: dr hab. Ryszard Deszcz
Język: polski


Efekty kształcenia: Wykorzystuje rachunek różniczkowy do badania przebiegu funkcji jednej zmiennej; stosuje rachunek całkowy funkcji jednej zmiennej do obliczania wybranych wielkości geometrycznych; rozwiązuje równania różniczkowe wybranych typów; wyznacza ekstrema funkcji dwóch zmiennych; stosuje rachunek całkowy funkcji dwóch i trzech zmiennych do obliczania wybranych wielkości geometrycznych; wylicza krzywiznę i skręcenie krzywej; wyznacza płaszczyznę styczną i normalną w punkcie regularnym powierzchni; wyznacza współrzędne tensora metrycznego powierzchni.

Kompetencje: Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia, rozumie i docenia znaczenie uczciwości intelektualnej w działaniach własnych i innych osób; postępuje etycznie.

Wymagania wstępne: Algebra

Treści kształcenia: Granica ciągu, ciągłość i pochodne funkcji jednej zmiennej, twierdzenie Lagrange’a, reguła de L’Hospitala, wzory Taylora i Maclaurina, badanie przebiegu zmienności funkcji jednej zmiennej, szeregi liczbowe, kryteria zbieżności, szeregi potęgowe, całki nieoznaczone, całki oznaczone, wzór Leibniza-Newtona, całki niewłaściwe, równania różniczkowe zwyczajne rzędu pierwszego, równania różniczkowe zwyczajne rzędu drugiego, zagadnienie Cauchy’ego, zastosowania. Funkcje dwóch lub więcej zmiennych, elementy klasycznej geometriia różniczkowej krzywych i powierzchni, całki podwójne, całki potrójne, całki krzywoliniowe, twierdzenie Greena, całka powierzchniowa, twierdzenie Stokesa, twierdzenie Gaussa-Ostrogradskiego, elementy analizy wektorowej: gradient, dywergencja, rotacja.

Literatura: 1. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, cz. I, PWN Warszawa, 2007. 2. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, cz. II, PWN, Warszawa, 2008. 3. Gewert M., Skoczylas Z., Analiza matematyczna 1, Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2011. 4. Gewert M., Skoczylas Z., Analiza matematyczna 1, Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław 2011. 5. Gewert M., Skoczylas Z., Analiza matematyczna 2, Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2010. 6. Gewert M., Skoczylas Z., Analiza matematyczna 2, Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław 2010. 7. Gewert M., Skoczylas Z., Równania różniczkowe zwyczajne. Teoria, przykłady, zadania, Oficyna wydawnicza GiS, Wrocław 2011. 8. Gewert M., Skoczylas Z., Elementy analizy wektorowej. Teoria, przykłady, zadania, Oficyna wydawnicza GiS, Wrocław 2011. 9. Leja F., Rachunek różniczkowy i całkowy ze wstępem do równań różniczkowych, PWN, Warszawa 2008. 10. Fichtenholz G.M., Rachunek różniczkowy i całkowy, tom I, II i III, PWN, Warszawa 2004. 11. Niczyporowicz E., Krzywe płaskie: wybrane zagadnienia z geometrii analitycznej i różniczkowej, PWN, Warszawa 1991. 12. Bronsztejn I.N., Siemiendiajew K.A., Musiol G., Muehlig H., Nowoczesne kompendium matematyki, PWN, Warszawa 2004.

Metody oceny: Zaliczenie ćwiczeń na podstawie wyników sprawdzianów i ocen bieżących, egzamin pisemny.

Uwagi: