ECTS Course Catalogue
Course details
Course code:
IGS10460o13Semester:
2013/2014 summerName:
Mathematics IMajor:
Geodesy and CartographyStudy Type:
first cycleCourse type:
compulsoryStudy Semester:
1ECTS points:
6Hours (Lectures / Tutorials / Other):
30 / 30 / 0Lecturer:
dr hab. Ryszard DeszczLanguage of instruction:
Polish / EnglishCourse in Polish with possibility of individual support in EnglishLearning outcomes:
The student comprehends mathematical interpretations of natural occurrences and phenomena and knows how to use mathematical methods in Earth sciences, especially in geodesy
and cartography.
Competences:
Finishing the course enables the student to examine natural phenomena and processes and provides a background for the further study of Mathematics II, Mathematics III, Statistics, Physics, Adjustment, Geodesy.Prerequisites:
Mathematics on the secondary school level (comprehensive secondary school of a general profile).Course content:
Limit of a sequence, limits, continuity and derivatives of a function of one variable, Lagrange theorem, L’Hospital’s rule, Taylor formula, Maclaurin formula, investigation of the shape
of a function of one variable, number series, tests for convergence of series, power series, indefinite integrals, definite integrals, Leibniz-Newton formula, improper integrals, first-order ordinary differential equations, second-order ordinary differential equations, Cauchy problem, applications.
Recommended literature:
Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, cz. I i cz. II, PWN Warszawa, 2005.
Gewert M., Skoczylas Z., Analiza matematyczna 1, Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2007.
Gewert M., Skoczylas Z., Analiza matematyczna 1, Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław 2007.
Gewert M., Skoczylas Z., Analiza matematyczna 2, Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2006.
Gewert M., Skoczylas Z., Analiza matematyczna 2, Przykłady i zadania, Oficyna wydawnicza GiS, Wrocław 2006.
Leja F., Rachunek różniczkowy i całkowy, PWN, Warszawa 1976.
Fichtenholz G.M., Rachunek różniczkowy i całkowy, tom I, II i III, PWN, Warszawa 2004.
Niczyporowicz E., Krzywe płaskie: wybrane zagadnienia z geometrii analitycznej i różniczkowej, PWN, Warszawa 1991.
Assessment methods:
Obligatory completion of tutorials, a written exam and (optionally) an oral examComment:
The scope and subject of the material have been agreed on with the lecturers: Mathematics II, Mathematics III, Statistics, Physics, Adjustment, Geodesy.