ECTS
ECTS Course Catalogue

Course details
Course code: RIPS10081o16
Semester: 2016/2017 winter
Name: Mathematics
Major: Production Engineering and Management
Study Type: first cycle
Course type: compulsory
Study Semester: 1
ECTS points: 9
Hours (Lectures / Tutorials / Other): 30 / 30 / 0
Lecturer: Dr hab. Wiesław Szulczewski prof. nadzw.
Language of instruction: Polish


Learning outcomes: Knowledge: The student has a knowledge of mathematics including analytical geometry, calculus and its applications in physics, technology and economy and the basics necessary for the mathematical description of physical phenomena, technical problems and formulate mathematical models and their application. Skills: The student is able to use methods of matrix algebra to solve any system or linear equation. They can also apply the matrix algebra to solve problems of analytic geometry. They are able to use calculus for curve sketching. They can also use calculus to describe geometrical and physical objects.

Competences: The student understands their limitations in gaining knowledge and understands the need for further education.

Prerequisites: Knowledge of mathematics at secondary school level.

Course content: Matrix algebra. Complex numbers. Determinants. Inverse matrix. Systems of linear equations - Cramer's rule. Gaussian elimination method. Analytical Geometry in plane and space. Vector algebra. Equations of plane and line. Surfaces and curves of second degree. Elements of differential calculus. Limits of sequences and functions. Derivative of the function. Integral calculus and its application in geometry and physics. Differential equations and their applications.

Recommended literature: 1. Mostowski A., Stark M., Elementy algebry wyższej, PWN, Warszawa 1975. 2. Mostowski A., Stark M., Algebra liniowa, PWN, Warszawa 1976. 3. Jurlewicz T., Skoczylas Z., Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania) 4. Jurlewicz T., Skoczylas Z., Algebra liniowa 1. Przykłady i zadania, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania). 5. Leja F., Geometria analityczna, PWN, Warszawa 1976. 6. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, Część I, PWN, Warszawa 1998 ( i późniejsze wydania) 7. Fichtenholz G.M., Rachunek różniczkowy i całkowy, PWN, Warszawa 1997. 8. Jurlewicz T., Skoczylas Z., Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania); 9. Jurlewicz T., Skoczylas Z., Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania).

Assessment methods: Knowledge: Positive tutorial mark, written exam and, in doubtful cases, additionally an oral exam. Skills: Selection of appropriate computational techniques for solution of considered problems. Social competence: The student recognizes the need for a precise formulation of the problem.

Comment: