ECTS Course Catalogue
Course details
Course code:
RTSS10235o12Semester:
2012/2013 winterName:
Mathematics IMajor:
Agricultural and Forestry EngineeringStudy Type:
first cycleCourse type:
compulsoryStudy Semester:
1ECTS points:
6Hours (Lectures / Tutorials / Other):
30 / 30 / 0Lecturer:
Dr hab. Wiesław Szulczewski prof. nadzw. UPLanguage of instruction:
PolishLearning outcomes:
Knowledge:
The student has a knowledge of mathematics including matrix algebra, algebra, analysis, functions, analytical geometry, number and functional series, curves and surfaces, necessary to describe and analyze:
- phenomena in agricultural engineering,
- technical systems in broadly comprehended agriculture,
- construction and operation of machinery and equipment used in the production field, gardening, animal husbandry, food processing, forestry and associated basic physical phenomena.
Skills:
The student can find information in literature, databases and other data sources; is able to integrate the obtained information, interpret it as well as conclude, formulate and justify opinions.
Competences:
The student understands their limitations in gaining knowledge and understands the need for further education. Prerequisites:
knowledge of mathematics at secondary school levelCourse content:
Matrix algebra. Complex numbers. Determinants. Inverse matrix. Systems of linear equations - Cramer's rule. Gaussian elimination method. Analytical Geometry in plane and space. Vector algebra. Equations of plane and line. Surfaces and curves of second degree. Elements of differential calculus. Limits of sequences and functions. Derivative of the function. Integral calculus and its application in geometry and physics. Differential equations and their applications.
Recommended literature:
Mostowski A., Stark M., 1975, Elementy algebry wyższej, PWN, Warszawa. Mostowski A., Stark M., 1976, Algebra liniowa, PWN, Warszawa. Jurlewicz T., Skoczylas Z., 1999 ( i późniejsze wydania), Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław.
Jurlewicz T., Skoczylas Z., 1999 ( i późniejsze wydania), Algebra liniowa 1. Przykłady i zadania, Oficyna Wydawnicza GIS, Wrocław. Leja F., 1976, Geometria analityczna, PWN, Warszawa. Krysicki W., Włodarski L., 1998 ( i późniejsze wydania), Analiza matematyczna w zadaniach, Część I, PWN, Warszawa. S. Smolik, 2004, Zadania z zastosowań matematyki dla Akademii Rolniczych, SGGW, Warszawa.
Jurlewicz T., Skoczylas Z., Analiza matematyczna 1. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania). Jurlewicz T., Skoczylas Z., Analiza matematyczna 1. Przykłady i zadania, Oficyna Wydawnicza GIS, Wrocław 1999 ( i późniejsze wydania). Jurlewicz T., Skoczylas Z., 1999 ( i późniejsze wydania), Analiza matematyczna 2. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław.
Jurlewicz T., Skoczylas Z., 1999 ( i późniejsze wydania), Analiza matematyczna 2. Przykłady i zadania, Oficyna Wydawnicza GIS, Wrocław.Assessment methods:
Knowledge: Positive tutorial mark, written exam and, in doubtful cases, additionally an oral exam.
Skills: Selection of appropriate computational techniques for solution of considered problems.
Social competence: The student recognizes the need for a precise formulation of the problem.
Comment: